Workshop IPB 2024

Sabtu, 25 Mei 2024, bertempat di Hotel Grand Savero, Bogor, diadakan workshop terkait Internet of Things bagi dosen-dosen Prodi Teknologi Rekayasan Komputer, Sekolah Vokasi Institut Pertanian Bogor. Dalam kesempatan ini, saya mencoba menjelaskan secara singkat mengenai Internet of Things, dan menaruh perhatian lebih dalam pada perkembangan Artificial Intelligence of Things di bidang agrikultur. Waktu jualah yang membatasi pertemuan ini. Terima kasih kepada rekan-rekan yang telah bergabung dan bersemangat dalam bertanya. Kiranya benih yang ditabur jatuh di tanah yang baik, sehingga dapat berakar, bertumbuh dan berbuah 🙂

Jurnal SINTA1 Q3 Scopus

Pada tanggal 9 Maret 2024, sebuah email dari  chief editor Journal of Robotics and Control (JRC) masuk ke mailbox. Rupanya, email pemberitahuan bahwa naskah yang ditulis, diterima dan siap publikasi. Sebuah perjalanan yang tidak mudah, mengingat proses review yang cukup menyita waktu dan pikiran. Namun, proses tidak pernah mengecewakan hasil.

Setelah ditelusuri, ternyata jurnal yang satu ini memiliki akreditasi Sinta1 dan terindeks Q3-scopus.

Selamat kepada seluruh rekan yang telah bersama berjuang.

IEEE : Machine Learning Algorithm and Modeling in Solar Irradiance Forecasting

Publikasi ilmiah yang pertama akhirnya terbit juga. Tulisan bertajuk Machine Learning Algorithm and Modeling in Solar Irradiance Forecasting terbit melalui publisher IEEE, setelah diseminarkan pada perhelatan 6th International Conference of Computer and Informatics Engineering (IC2IE), 14-15 September 2023.

Machine Learning Algorithm and Modeling in Solar Irradiance Forecasting | IEEE Conference Publication | IEEE Xplore

 

 

Praktisi Mengajar Angkatan III

Dalam program Praktisi Mengajar angkatan ke 3, “dilamar” oleh tiga prodi dari dua kampus, namun yang satu gugur karena dosen pengampu lupa meng-upload RKK. Dua yang berjalan, dua-duanya dari prodi Teknik  Telekomunikasi (D4), Politeknik Negeri Sriwijaya, masing-masing berdurasi 12 jam.

Terima kasih kepada teman-teman yang sudah bergabung, semoga apa yang dibagikan boleh bermanfaat.

Fast Track to Machine Learning, 14.11.2023 – 15.11.2023

Kelas pelatihan kali ini bersifat private, berisi materi Fast Track to Machine Learning yang berlangsung selama 2 hari penuh, 14 – 15 November 2023. Bapak Sahbuddin Abdulkadir, S.T., M.T., dari Politeknik Negeri Ujungpandang, sangat antusias mendalami ilmu yang satu ini.

Diskusi Ilmiah Internet of Things di Universitas Panca Budi

Diskusi ilmiah *Internet of Things* di Prodi Sistem Komputer Universitas Pembangunan Panca Budi, Medan, 6 November 2023.

Terima kasih Bu Ika Devi yang sudah menjadi moderator, dan Pak Eko Hariyanto yang telah membuka acara.

Internet of Things : 15.09.2023 – 19.09.2023

Pelatihan mengenai Internet of Things yang diselenggarakan secara exclusive khusus untuk Politeknik Caltex Riau (PCR) berlangsung selama 5 hari, 15 – 19 September 2023, secara online.

Diikuti oleh 3 (tiga) srikandi hebat : Elva Susianti, S.ST, M.T., Putri Madona, S.ST., M.T. dan Retno Tri Wahyuni, S.T., M.T.

Energi Meter PZEM-017

PZEM-017 adalah modul komunikasi DC yang dapat mengukur daya DC hingga 300VDC dan pengukuran arus tergantung pada pemasangan shunt eksternal dengan rentang 50A, 100A, 200A, dan 300A. Sebelum menggunakannya, pastikan konfigurasi parameter yang terdapat dalam modul sesuai dengan rentang besaran arus yang akan diukurnya, yakni berdasarkan shunt yang terpasang. Parameter ini dapat diatur melalui function code 0x03 register 0x0003.

  • to be continued

Artificial Intelligence dan Perspektif Masa Depan

Senin, 18 September 2023, di awal tahun ajaran baru 2023/2024, Prodi Teknik Elektro Universitas Kristen Maranatha mengadakan pembekalan untuk seluruh mahasiswa Teknik Elektro. Saya diundang menjadi nara sumber untuk tajuk “Artificial Intelligence dan Perspektif Masa Depan“.

Terima kasih Dr. Heri Andrianto, S.T., M.T. yang telah mengundang. Kiranya apa yang disampaikan melalui kesempatan ini, boleh memberkati mahasiswa dan dosen yang hadir 🙂

Fungsi Aktivasi dalam Deep Learning

Deep learning, sebuah sub bidang machine learning, berkembang pesat dalam cara kerja rumit artificial neural network yang terdiri dari beberapa lapisan neuron buatan yang saling berhubungan. Untuk memungkinkan neuron belajar dan membuat prediksi secara akurat, fungsi aktivasi memainkan peran penting. Fungsi aktivasi memperkenalkan non-linearitas ke dalam jaringan saraf, memungkinkannya memodelkan hubungan kompleks antara masukan dan keluaran, dan meningkatkan kekuatan pengambilan keputusan jaringan.

Apa itu Fungsi Aktivasi?

Fungsi aktivasi adalah fungsi matematika yang mengambil jumlah masukan tertimbang dari lapisan neuron sebelumnya dan menerapkan transformasi untuk menghasilkan nilai keluaran atau aktivasi. Tujuan dari transformasi ini ada dua: (1) untuk memperkenalkan non-linearitas dan (2) memungkinkan sinyal menyebar melalui jaringan.

Fungsi aktivasi menormalkan nilai keluaran, menjadikannya berada dalam kisaran tertentu. Kisaran ini sering kali terletak antara 0 dan 1 atau -1 dan 1, bergantung pada jenis fungsi aktivasi yang digunakan. Setiap neuron di jaringan saraf dalam biasanya menggunakan fungsi aktivasi untuk memutuskan kapan dan sejauh mana fungsi tersebut harus diaktifkan.

Fungsi Aktivasi Umum

1. Fungsi sigmoid (Fungsi logistik)

Fungsi sigmoid adalah salah satu fungsi aktivasi paling awal yang digunakan dalam pembelajaran mendalam. Ini memetakan jumlah input tertimbang ke nilai antara 0 dan 1, yang mewakili kemungkinan aktivasi neuron. Namun, fungsi sigmoid mengalami masalah vanishing gradient, di mana gradien menjadi sangat kecil di lapisan yang lebih dalam, sehingga menyebabkan konvergensi lambat selama pelatihan.

2. Rectified Linear Unit (ReLU)

ReLU adalah salah satu fungsi aktivasi yang paling banyak digunakan dalam pembelajaran mendalam saat ini. Ini didefinisikan sebagai f(x) = max(0, x), dengan output adalah 0 untuk nilai negatif dan input tetap tidak berubah untuk nilai positif. ReLU secara efektif memecahkan masalah vanishing gradient dan mempercepat pelatihan. Namun dapat menyebabkan dead neuron jika gradien menjadi nol untuk semua input ke dalam neuron selama pelatihan.

3. Leaky ReLU

Untuk mengurangi masalah neuron mati, Leaky ReLU diperkenalkan. Ini didefinisikan sebagai f(x) = max(αx, x), dengan α adalah konstanta kecil (<1) yang menentukan kemiringan input negatif. Dengan mengizinkan gradien kecil untuk masukan negatif, Leaky ReLU mencegah kematian neuron dan memberikan pembelajaran yang lebih baik untuk deep neural network.

4. Hyperbolic Tangent (tanh)

Fungsi tangen hiperbolik mirip dengan fungsi sigmoid tetapi memetakan masukan ke nilai antara -1 dan 1. Fungsi ini memberikan non-linier yang lebih kuat dan lebih simetris di sekitar titik asal dibandingkan dengan fungsi sigmoid. Mirip dengan fungsi sigmoid, fungsi aktivasi tanh juga dapat mengalami masalah vanishing gradient.

5. Softmax

Softmax sering digunakan sebagai fungsi aktivasi di lapisan keluaran jaringan saraf ketika menangani masalah klasifikasi kelas jamak. Ini mengubah jumlah masukan tertimbang menjadi distribusi probabilitas, di mana setiap keluaran mewakili kemungkinan kelas tertentu. Softmax memastikan bahwa jumlah semua probabilitas sama dengan 1. Hal ini sangat berguna ketika berhadapan dengan kelas yang saling eksklusif.